Parallel and distributed Gröbner bases computation in JAS

نویسنده

  • Heinz Kredel
چکیده

This paper considers parallel Gröbner bases al-gorithms on distributed memory parallel comput-ers with multi-core compute nodes. We summa-rize three different Gröbner bases implementations:shared memory parallel, pure distributed memoryparallel and distributed memory combined withshared memory parallelism. The last algorithm,called distributed hybrid, uses only one controlcommunication channel between the master nodeand the worker nodes and keeps polynomials inshared memory on a node. The polynomials aretransported asynchronous to the control-flow of thealgorithm in a separate distributed data structure.The implementation is generic and works for allimplemented (exact) fields. We present new perfor-mance measurements and discuss the performanceof the algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified parallel F4 algorithm for shared and distributed memory architectures

In applications of symbolic computation an often required but complex procedure is finding Gröbner bases for polynomial ideals. Hence it is obvious to realize parallel algorithms to compute them. There are already flavours of the F4 algorithm like [4] and [13] using the special structure of the occurring matrices to speed up the reductions on parallel architectures with shared memory. In this p...

متن کامل

Comprehensive Gröbner Bases in a Java Computer Algebra System

We present an implementation of the algorithms for computing comprehensive Gröbner bases in a Java computer algebra system (JAS). Contrary to approaches to implement comprehensive Gröbner bases with minimal requirements to the computer algebra system, we aim to provide and utilize all necessary algebraic structures occurring in the algorithm. In the implementation of a condition we aim at the m...

متن کامل

On parallel block algorithms for exact triangularizations

We present a new parallel algorithm to compute an exact triangularization of large square or rectangular and dense or sparse matrices in any field. Using fast matrix multiplication, our algorithm has the best known sequential arithmetic complexity. Furthermore, on distributed architectures, it drastically reduces the total volume of communication compared to previously known algorithms. The res...

متن کامل

Parallel Reduction of Matrices in Gröbner Bases Computations

Unfortunately the computation is time-and memory intensive. Mathematical knowledge is used to optimize the algorithms. Computer science provides another possibility to increase the computations: parallelization 2 / 24 Motivation Gröbner bases are used, to solve polynomial equation systems, move robotics, verify programs,. .. Unfortunately the computation is time-and memory intensive. Mathematic...

متن کامل

Computation of Jeffrey-Kirwan residue using Gröbner basis

The Jeffrey-Kirwan residue is a powerful tool for computation of intersection numbers or volume of symplectic quotients. In this article, we give an algorithm to compute it using Gröbner bases. Our result is parallel to that of [2] for Grothendieck residues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1008.0011  شماره 

صفحات  -

تاریخ انتشار 2010